Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Microbiol ; 171(8): 319-330, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32628999

RESUMO

Bacterial iron-sulfur (Fe-S) clusters are essential cofactors for many metabolic pathways, and Fe-S cluster-containing proteins (Fe-S proteins) regulate the expression of various important genes. However, biosynthesis of such clusters has remained unknown in genus Burkholderia. Here, we clarified that Burkholderia multivorans ATCC 17616 relies on the ISC system for the biosynthesis of Fe-S clusters, and that the biosynthetic genes are organized as an isc operon, whose first gene encodes IscR, a transcriptional regulatory Fe-S protein. Transcription of the isc operon was repressed and activated under iron-rich and -limiting conditions, respectively, and Fur, an iron-responsive global transcriptional regulator, was indicated to indirectly regulate the expression of isc operon. Further analysis using a ΔiscR mutant in combination with a constitutive expression system of IscR and its derivatives indicated transcriptional repression and activation of isc operon by holo- and apo-forms of IscR, respectively, through their binding to the sequences within an isc promoter-containing (Pisc) fragment. Biochemical analysis using the Pisc fragment suggested that the apo-IscR binding sequence differs from the holo-IscR binding sequence. The results obtained in this study revealed a unique regulatory system for the expression of the ATCC 17616 isc operon that has not been observed in other genera.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Burkholderia/metabolismo , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/genética , Redes e Vias Metabólicas/genética , Mutação , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604768

RESUMO

Conjugative transfer of bacterial plasmids to recipient cells is often mediated by type IV secretion machinery. Experimental investigations into the minimal gene sets required for efficient conjugative transfer suggest that such gene sets are variable, depending on plasmids. We have been analyzing the conjugative transfer of Pseudomonas-derived and IncP-9 plasmids, NAH7 and pWW0, whose conjugation systems belong to the MPFT type. Our deletion analysis and synthetic biology analysis in this study showed that these plasmids require previously uncharacterized genes, mpfK (formerly orf34) and its functional homolog, kikA, respectively, for their efficient conjugative transfer. MpfK was localized in periplasm and had four cysteine residues whose intramolecular or intermolecular disulfide bond formation was suggested to be important for efficient conjugative transfer. The mpfK homologs were specifically carried by many MPFT-type plasmids, including non-IncP-9 plasmids, such as R388 and R751. Intriguingly, the mpfK homologs from the two non-IncP-9 plasmids were not required for conjugation of their plasmids, but were able to complement efficiently the transfer defect of the NAH7 mpfK mutant. Our results suggested the importance of the mpfK homologs for conjugative transfer of MPFT-type plasmids.IMPORTANCE IncP-9 plasmids are important mobile genetic elements for the degradation of various aromatic hydrocarbons. Elucidation of conjugative transfer of such plasmids is expected to greatly contribute to our understanding of its role in the bioremediation of polluted environments. The present study mainly focused on the conjugation system of NAH7, a well-studied and naphthalene-catabolic IncP-9 plasmid. Our analysis showed that the NAH7 conjugation system uniquely requires, in addition to the conserved components of the type IV secretion system (T4SS), a previously uncharacterized periplasmic protein, MpfK, for successful conjugation. Our findings collectively revealed a unique type of T4SS-associated conjugation system in the IncP-9 plasmids.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética , Plasmídeos/genética , Sequência de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli , Genes Bacterianos , Pseudomonas/genética , Pseudomonas putida/genética , Sistemas de Secreção Tipo IV/genética
3.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625994

RESUMO

Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderiamultivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon.IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the role of HemP in betaproteobacterial species was elucidated for the first time, to our knowledge, in this study. The HemP protein was also found to have two additional properties that have not been reported for functional homologues in other species; one is that HemP is able to bind to the promoter-containing region of the hmu operon to directly activate its transcription, and the other is that HemP is also required for the expression of an unknown hemin uptake system.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/metabolismo , Regulação Bacteriana da Expressão Gênica , Hemina/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Burkholderia/genética , Óperon , Regiões Promotoras Genéticas , Transativadores/genética , Ativação Transcricional
4.
Genome Announc ; 4(3)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284142

RESUMO

We determined the complete genome sequence of Sphingopyxis macrogoltabida strain 203N, a polyethylene glycol degrader. Because the PacBio assembly (285× coverage) seemed to be full of nucleotide-level mismatches, the Newbler assembly of MiSeq mate-pair and paired-end data was used for finishing and the PacBio assembly was used as a reference. The PacBio assembly carried 414 nucleotide mismatches over 5,953,153 bases of the 203N genome.

5.
Genome Announc ; 4(3)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284143

RESUMO

The complete genome sequence of Sphingopyxis terrae strain 203-1, which is capable of growing on polyethylene glycol, was determined. The genome consisted of a chromosome with a size of 3.98 Mb and a plasmid with a size of 4,328 bp. The strain was deposited to the National Institute of Technology and Evaluation (Tokyo, Japan) under the number NBRC 111660.

6.
J Biotechnol ; 228: 67-68, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27130496

RESUMO

Complete genome sequence of Burkholderia caribensis Bcrs1W, isolated from a phenanthrene-degrading mixed culture, was determined. The genomic information of Bcrs1W will be beneficial to elucidating the mechanisms of its positive effects on phenanthrene degradation by co-residing Mycobacterium sp. Epa45, and to exploiting their degradation potentials.


Assuntos
Burkholderia/genética , Genoma Bacteriano/genética , Mycobacterium/metabolismo , Fenantrenos/metabolismo , Japão , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...